Photocontrol of reversible amyloid formation with a minimal-design peptide.

نویسندگان

  • Steven A Waldauer
  • Shabir Hassan
  • Beatrice Paoli
  • Paul M Donaldson
  • Rolf Pfister
  • Peter Hamm
  • Amedeo Caflisch
  • Riccardo Pellarin
چکیده

Amyloid aggregates are highly ordered fibrillar assemblies of polypeptides involved in a number of neurodegenerative diseases. Very little is known on the pathways of self-assembly of peptides into the final amyloid fibrils, which is due in part to the difficulty of triggering the aggregation process in a controlled manner. Here we present the design and validation of a cross-linked hexapeptide that reversibly aggregates and dissociates under ultraviolet light irradiation control. First molecular dynamics simulations were carried out to identify, among hundreds of possible sequences, those with the highest propensity to form ordered (β-sheet) oligomers in the trans state of the azobenzene cross-linker, and at the same time with the highest solubility in the cis state. In the simulations, the peptides were observed to spontaneously form ordered oligomers with cross-β contacts when the cross-linker was in the trans state, whereas in the cis state they self-assemble into amorphous aggregates. For the most promising sequence emerging from the simulations (Ac-Cys-His-Gly-Gln-Cys-Lys-NH(2) cross-linked at the two cysteine residues), the photoisomerization of the azobenzene group was shown to induce reversible aggregation by time-resolved light scattering and fluorescence measurements. The amyloid-like fibrillar topology was confirmed by electron microscopy. Potential applications of minimally designed peptides with photoswitchable amyloidogenic propensity are briefly discussed.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Islet Amyloid Polypeptide is not a Target Antigen for CD8+ T-Cells in Type 2 Diabetes

Background: Type 2 diabetes (T2D) is a chronic metabolic disorder in which beta-cells are destroyed. The islet amyloid polypeptide (IAPP) produced by beta-cells has been reported to influence beta-cell destruction. Objective: To evaluate if IAPP can act as an autoantigen and therefore, to see if CD8 + T-cells specific for this protein might be present in T2D patients. Methods: Peripheral blood ...

متن کامل

Effects of Dimethyl Sulfoxide and Mutations on the Folding of Abeta(25-35) Peptide: Molecular Dynamics Simulations

The 25-35 fragment of the amyloid β (Aβ) peptide is a naturally occurring proteolytic by-product of its larger parent molecule that retains the amyloid characteristics and toxicity of the full length parent molecule. Aggregation of this peptide occurs rapidly in aqueous solutions and thus characterization of its folding process is very difficult. In the present study, early stages of Aβ(25–35) ...

متن کامل

Designing of Testable Reversible QCA Circuits Using a New Reversible MUX 2×1

Recently testing of Quantum-dot Cellular Automata (QCA) Circuits has attracted a lot of attention. In this paper, QCA is investigated for testable implementations of reversible logic. To amplify testability in Reversible QCA circuits, a test method regarding to Built In Self Test technique is developed for detecting all simulated defects. A new Reversible QCA MUX 2×1 desig...

متن کامل

Fault Tolerant Reversible QCA Design using TMR and Fault Detecting by a Comparator Circuit

Quantum-dot Cellular Automata (QCA) is an emerging and promising technology that provides significant improvements over CMOS. Recently QCA has been advocated as an applicant for implementing reversible circuits. However QCA, like other Nanotechnologies, suffers from a high fault rate. The main purpose of this paper is to develop a fault tolerant model of QCA circuits by redundancy in hardware a...

متن کامل

Designing of Testable Reversible QCA Circuits Using a New Reversible MUX 2×1

Recently testing of Quantum-dot Cellular Automata (QCA) Circuits has attracted a lot of attention. In this paper, QCA is investigated for testable implementations of reversible logic. To amplify testability in Reversible QCA circuits, a test method regarding to Built In Self Test technique is developed for detecting all simulated defects. A new Reversible QCA MUX 2×1 desig...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • The journal of physical chemistry. B

دوره 116 30  شماره 

صفحات  -

تاریخ انتشار 2012